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 The use of a brake power meter is invaluable for describing descending performance in 

cycling. However, the interaction between variables such as brake work, brake time and 

brake power can be intricate, which might be a barrier to the utility of the brake power 

meter as a training tool. The aim of this study was to determine if brake power can be 

normalized to create a single-metric output that can capture braking performance during 

descents. Nine nationally competitive mountain bikers completed three trials each at race 

pace on a mountain bike descent using a bicycle equipped with a brake power meter. Brake 

power was normalized instantaneously by dividing it by the kinetic energy of the bicycle-

rider system and was integrated to calculate normalized brake work (unitless). Normalized 

brake work (26.3 ± 15.3) was more strongly correlated (r2 = 0.929; p < 0.001) with 

descending performance time (130.8 ± 20.1 s) than relative brake work (676.0 ± 152.3 J/kg; 

r2 = 0.477; p < 0.001), brake time (62.3 ± 21.1; r2  = 0.729; p < 0.001) or relative brake 

power (11.4 ± 2.2 W/kg; r2 = 0.429; p < 0.001). On the descent used in this study, 

normalized brake work was the strongest indicator of descending performance based on 

braking. It is recommended that this metric be used to quickly assess brake use and provide 

feedback to cyclists. 
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1. Introduction  

Performance indices and predictive models in cycling sports have 

remained popular throughout the literature as these provide 

capacity for guided analyses and training interventions. To inform 

training, however, these indices must be valid, i.e., they must 

accurately separate good and poor performance (Buekers & 

Magill, 1995; Buekers et al., 1994; Ford et al., 2007; Ryan et al., 

2002). In particular, novice learners are especially dependent on 

receiving valid feedback to perform correctly (Buekers et al., 

1994; Ford et al., 2007). Thus, it is critical that the performance 

indices used to guide training are valid. 

Historically, investigative models in cycling sports have 

focused almost exclusively on measurements of propulsive power 

output and propulsive work collected from on-the-bike power 

meters in the drivetrain (e.g., Hurst & Atkins, 2006; Macdermid 

et al., 2014; Miller et al., 2015; Steiner et al., 2016). Data gathered 

from these power meters have been able to predict the variance in 

cycling performance. For example, relative rates of propulsive 

work have a strong negative correlation with the time to complete 

a climb. For the practitioner and athlete, this means that to 

improve performance on uphill sections, competitors must aim to 

increase rates of relative propulsive power (W/kg). Accordingly, 

the intent of documented training interventions has aimed to 

increase relative propulsive power.  

Propulsion remains an important factor for mountain bike 

(MTB) performance, and predictive models based on relative 

power output have proven useful for cross-country racing 

(Gregory et al., 2007; Prins et al., 2016; Vaitkevičiūtė & Milašius, 

2012). However, more recent evidence has highlighted the 

importance of multi-dimensional performance models based on 

the highly variable and technical terrain ridden (Chidley et al., 

2014; Miller et al., 2019; Novak et al., 2018). Indeed, while MTB 

ascending performance is strongly linked with relative propulsive 

power output, descending performance is instead linked to “skill” 

and not propulsive power at all. As such, a brake power meter was 

developed to analyze the use of brakes when mountain biking 

(Miller, Fink, Macdermid, Perry, & Stannard, 2018; Miller et al. 
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2019). This new technology proved useful for describing non-

propulsive MTB descending/turning and was also employed in 

conjunction with propulsive power to enhance predictive models 

in MTB time-trial simulations on varying terrain (Miller et al., 

2019). Differences in both braking behavior and performance (i.e., 

time) between experienced and inexperienced riders were seen in 

a study of a single turn (Miller, Fink, Macdermid, Allen, & 

Stannard, 2018), raising the possibility that the inexperienced 

riders could improve performance by adopting braking patterns 

more like the experienced riders. There is, however, a need to 

extend the use of the brake power meter from a single turn, in 

highly controlled conditions, to a more ecologically valid 

situation, i.e. a technical descent with turns of different radii and 

with differences in the approach speed to the turn. 

To date, this new brake power meter technology has focused 

on utilizing the same kinds of variables collected from propulsive 

power meters – such as power and work – due to their relative 

relevance, non-complexity and prevalence of use (Miller et al., 

2017; Miller, Fink, Macdermid, Perry, & Stannard, 2018; Miller 

et al., 2019). The measurement of brake work and power is similar 

to the measurement of propulsive power and work; however, the 

magnitude of braking necessary to slow riders depends on a 

number of variables, which complicates the interaction between 

the brake work and brake power performed and how these affect 

the speed of the bike. These variables were significantly 

correlated with performance (i.e., time), but neither variable 

explained a high percentage of the variance in performance time 

(r2 < .500, less than the correlation for the time spent braking) 

(Miller et al., 2019), which may be a barrier to the effectiveness 

of brake training interventions and descending performance 

explanation when using a brake power meter.  

To highlight some of the complexities of brake power meter 

data analysis, simple energy equations can be utilized to compare 

braking data and effects on performance given the law of 

conservation of energy. At the same time, these same equations 

may also help to reduce brake power meter data to more usable 

and comparable metrics. A brief sequence of the braking variables 

collected and the physical comparisons made are outlined below. 

Brake power (W) is calculated as the product of brake torque 

and the velocity of the bike (Eq. 1): 

PB = ωf (τf + τr)   

where PB is brake power, ωf is the angular velocity of the front 

wheel, and τf and τr are the brake torque at the front and rear 

wheels, respectively (Miller et al., 2019).  

Brake work (WB, in J) is calculated by integrating the product 

of front and rear brake power (Eq. 2): 

𝑊𝐵 = ∫ (𝑃𝐵𝑓 + 𝑃𝐵𝑟)𝑑𝑡
𝑡

0
   

The brake work completed by a rider slowing down on flat 

ground is equal to the change in kinetic energy when accounting 

for drag and rolling resistance (Eq. 3):  

𝑊𝐵 +  𝐸𝑟𝑟 + 𝐸𝑑 = ∆EK   

where, Err is rolling resistance, Ed is energy lost to aerodynamic 

drag, and ∆EK is the change in kinetic energy as explained 

previously (Miller et al., 2017).  

The change in kinetic energy of the bicycle-rider system can 

be explained given (Eq. 4): 

∆EK = [(
1

2
𝑚𝑣2

2) − (
1

2
𝑚𝑣1

2)] + [(
1

2
Ι𝜔2

2) − (
1

2
Ι𝜔1

2)]    

where m is the combined mass of the bike and the rider wearing 

cycling gear, v is the velocity, I is the moment of inertia, and ω 

is the angular velocity of the front wheel.  

The instantaneous kinetic energy can therefore be calculated 

as (Eq. 5): 

EK = (
1

2
𝑚𝑣2) + (

1

2
Ι𝜔2)    

where v and ω are instantaneous velocity and angular velocity, 

respectively. 

In Eq. 5, m and v are important to note. Assuming two riders 

of different mass, the kinetic energy at any given time is not equal, 

and thus the brake work required to slow these two masses will 

not be equal. More importantly, two riders of the same mass but 

travelling at different velocities will have different kinetic energy 

because the kinetic energy of each rider is proportional to velocity 

squared. For example, a rider traveling twice as fast will require 

four times the brake work to come to a complete stop. Indeed, 

with differences in the amount of brake work required, the brake 

power recorded will be different in these cases—even with the 

same time spent braking. Although we understand that it is 

important to complete brake work across a very short brake time 

to minimize the time spent traveling slowly – and that this leads 

to a very high brake power – it is difficult to make comparisons 

between individuals even when accounting for mass. 

Accordingly, it is understandable why traditional measurements 

of brake work or average brake power have a relatively weak 

relationship with performance time across a given distance. This 

potential barrier to the understanding and comparison of the data 

must be overcome for brake power meter measurements to have 

utility for training.  

Given the complexities in analyzing brake data, it is sensible 

to develop an algorithm that can calculate the amount of braking 

done by the rider in relation to both the total mass and the velocity 

of the bicycle-rider system. One way to do this could be to divide 

the instantaneous brake power by the kinetic energy of the 

bicycle-rider system, resulting in a variable with units of (1/s). 

This normalization of brake power effectively adjusts the braking 

power based on both mass and velocity. Then, normalized brake 

power can be integrated to find normalized brake work, which is 

a unitless measure. Since MTB descending performance is likely 

linked to braking and cannot be predicted using propulsive 

models, a normalized brake work model would help to describe 

and analyze these performances. 

 To provide better feedback to cyclists, the aim of this study is 

to determine what variables correlate most strongly with 

performance during a mountain biking descent under ecologically 

valid conditions. It is hypothesized that variations in performance 

time on a mountain bike descending track could be better 

explained by a new normalized brake work than by traditional 

brake metrics of relative brake work, brake time, or relative brake 
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power, henceforth signifying the practical relevance of the 

algorithm in question.      

2. Methods 

2.1 Participants and Task 

Nine nationally competitive mountain bikers (mean ± SD: age = 

25.6 ± 3.6 years; body mass = 77.4 ±11.6 kg; height = 177.2 ± 

11.2 cm) volunteered to take part in this study. Riders were asked 

to ride as quickly as possible on a track (Figure 1) that was chosen 

because of the descending nature which eliminated performance 

benefits due to pedaling (Miller, Macdermid, Fink, & Stannard, 

2017). Participants completed three consecutive trials with 15 min 

epoch between. All participants were familiar with the track 

having previously ridden it on their own time. Informed consent 

was obtained prior to testing, and the methods used for testing 

were approved by Massey University’s Human Ethics 

Committee. 

 

 

Figure 1: Elevation profile of the descending track used for testing 

in this study. The total distance was 1.01 km with a total elevation 

loss of 165 m (average gradient of -16.3%). This track was chosen 

based in its previous use which indicated that performance time 

was not dependent on propulsive work. 

 
2.2 Apparatus 

Prior to each test session, each participant was weighed while 

wearing cycling apparel, which included clothing, helmet and 

shoes. Participants all rode the same mountain bike (Trance 1, 

Giant Bicycles, New Zealand), which had suspension adjusted to 

manufacturer specifications pre-testing and had tires inflated to a 

standardized pressure (Macdermid et al., 2015). The bike was 

outfitted with a custom designed brake power meter (detailed in 

Miller, Fink, Macdermid, Perry, & Stannard, 2018) that 

continuously sampled and recorded at 128 Hz, and a propulsive 

power meter (S2275, Quarq, Spearfish, SD, USA) that recorded 

data at 1 Hz. Both the propulsive and brake power meters were 

calibrated prior to each test session, the Quarq by manually zeroed 

according to manufacturer specifications using a Garmin 510 

(Garmin, Olathe, Kansas, USA) and the brake power meter by 

hanging known weights from the rim and recording the torque 

observed by the sensor. Using this method of calibrating the brake 

power meter, the brake power meter has been shown accurate to 

within 2% on the road and 5% on a dirt path (Miller, Fink, 

Macdermid, Perry, & Stannard, 2018). Brake power meter data 

were recorded on a stand-alone data logger (DATAQ UHS710; 

DATAQ Instruments, Akron Ohio, USA) attached to the bicycle 

handlebars while propulsive power was recorded on a portable 

cycle computer (510; Garmin Ltd., Schaffhausen, Switzerland). 

The total mass of the bicycle and all equipment was 18.64 kg; this 

is considerably heavier than a typical competition mountain bike, 

owing to the relatively large mass of the prototype brake power 

meter. 

2.3 Procedure and Analysis 

Brake power meter data was analyzed using Matlab R2011b (The 

MathWorks, Inc., Natick, MA, USA) to calculate variables of 

interest. Distance travelled during each trial was calculated by 

integrating the angular velocity of the front wheel over the descent 

and multiplying by the radius of the wheel plus tire. Performance 

time (s) was estimated as the time at which the distance travelled 

was equal to the distance of the track. There is a potential issue in 

that it assumes a given distance for the descent, which is not 

correct given that different paths on the track would result in 

different distances, but this method was chosen because it could 

be calculated without relying on GPS, which could not be 

accurately synced with the brake power meter. Brake power and 

brake work were calculated as explained in Eq. 1 and 2. Relative 

brake work was calculated by dividing the brake work over the 

entire descent by the mass of the rider plus bicycle. Any 

measurement that did not exceed 8 Nm was removed from 

analysis to reduce the effect of noise. Brake time (s) was the total 

time that either brake exceeded 8 Nm. Relative brake power 

(W/kg) was calculated as the product of relative brake work 

divided by brake time. 

Normalized brake power (NBP), is brake power adjusted for 

kinetic energy, and was calculated instantaneously as (Eq. 6): 

NBP= 
ωf (τf + τr) 

(
1
2

𝑚𝑣2) + (
1
2

Ι𝜔2)
   

 

where ωf is the angular velocity of the front wheel, and τf and τr 

are the brake torque at the front and rear wheels respectively, m is 

the mass of the rider plus bicycle, I is the moment of inertia of the 

wheels, v is the instantaneous velocity, and ω is the instantaneous 

angular velocity of the wheels. The units for normalized brake 

power are 1/s. 

Normalized brake power was integrated to calculate 

normalized brake work (NBW) across the descent (Eq. 7): 

NBW = ∫ NBPdt
t

0

    
 

where normalized brake work is unitless.  

As an additional method to visualize the data, histograms of 

normalized brake power were created by creating 10 bins, 

separated by 0.05 1/s. Values below 0.05 1/s were removed from 

the analysis, since these were extremely light braking events, 
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while values above 0.50 1/s were included in the same bin due to 

their infrequent occurrence.  

 2.4 Statistical Approach 

All trials for all participants were included in the analysis All 

statistical analyses were completed in GraphPad Prism 7.00 

(GraphPad Software, San Diego California, USA). The mean ± 

standard deviation (SD) was calculated for performance time, 

relative brake work (brake work divided by the mass of the 

bicycle and rider), brake time, relative brake power (brake power 

divided by the mass of the bicycle and rider) and normalized brake 

work across all trials. The relationship between each of the 

variables and performance time was determined by applying a 

mixed model regression, with the y-intercept being a random 

factor. The fitted slope and y-intercept were used to calculate the 

degree of relationship between observed and fitted data for each 

of the variables. First, the overall sum of squares was calculated: 

𝑆𝑆𝑇𝑂 = ∑(𝑌𝑖 − �̅�)2 

where Y is the variable of interest and �̅�  is the mean of that 

variable. The error sum of squares was calculated using the fitted 

slope and y-intercept: 

𝑆𝑆𝐸 = ∑(𝑌𝑖 − �̂�)
2
 

where �̂� is the fitted value. R2 was then calculated using 

𝑅2 = 1 − (
𝑆𝑆𝐸

𝑆𝑆𝑇𝑂
) 

This calculation was performed for all variables to quantify the 

relationship between the variables of interest, coefficients of 

determination were also calculated between normalized brake 

power and relative brake work, brake time, and relative brake 

work. The alpha value for all tests was set to 0.05. 

3. Results 

The potential energy at the onset of the descent was 154,578 

±18,887 J, and participants completed an average propulsive work 

equating to 1,231 ± 3,217 J. Descriptive data for performance and 

braking variables are highlighted in Table 1. The relationship 

between performance time and relative brake work, brake time, 

relative brake power and normalized brake work, respectively, are 

reported in Figure 2A-D. Normalized brake work on the track 

used in this study displayed the strongest relationship with 

performance time (r2 = 0.912, p < 0.001). Normalized brake work 

was also significantly correlated to measurements of relative 

brake work (r2 = 0.669, p < 0.001), brake time (r2 = 0.7999, p < 

0.001), and relative brake power (r2 = 0.293, p = 0.0036). 

 

Table 1. Mean ± SD for performance and braking variables 

Variable Mean SD 

Performance time (s) 130.8  20.1 

Velocity (km/h) 28.4 3.8 

Relative brake work (J/kg) 676.0 152.3 

Brake time (s) 62.3 21.1 

Relative brake power (W/kg)  11.4 2.2 

Normalized brake work  26.3 15.3 

Note. Values were obtained from 27 descending trials on a 

mountain bike track that was not dependent on propulsive work 

 

 

Figure 2: The relationship between performance time (s) on the mountain bike descent and A) relative brake work (J/kg); B) brake time 

(s); C) relative brake power (W/kg); and D) normalized brake work. The symbols and colors represent different riders. 
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To illustrate differences between skill levels, one trial was 

selected each from a high-performer (performance time = 115.4 

s; normalized brake work = 13.1; relative brake work = 529.1 

J/kg) while another was selected as that of a low-performer 

(performance time = 169.9 s; normalized brake work = 43.0; 

relative brake work = 966.5 J/kg). The relative brake power and 

normalized brake power from a small section of these trials are 

highlighted in Figure 3, which was chosen due to clear visual 

differences for each of comparison. From each entire trial, a 

histogram was created to indicate the magnitude of normalized 

brake power as a percent of brake time (Figure 4).  What can be 

seen from these figures is that the high-performer was generating 

less normalized brake power during the same section of the 

descent (Figure 3). Moreover, when looking across the entire 

descent (Figure 4), the low performing rider spent a greater 

percentage of the braking time with high normalized brake 

powers.  

 

 

Figure 3: Graphical representation of normalized brake power (1/s) 

across a 150 m portion of the descent from one trial each by a 

high-performing and low-performing mountain biker. The 

normalized brake work was 0.13 and 0.80 for the high-performer 

and low-performer, respectively. The time to complete this 

section was 14.72 and 18.22 s for the high- and low-performer, 

respectively, which equated to 10.91 and 8.23 m/s, respectively. 

 

Figure 4: Frequency distribution of normalized brake power (1/s) 

comparing a high- and low-performing mountain biker. 

4. Discussion 

Braking has been identified as an important factor for 

performance in mountain biking; however, the exact relationship 

between braking and performance is difficult to confirm (e.g., 

Miller, Fink, Macdermid, Allen, & Stannard, 2018; Miller et al., 

2019). This is the first investigation to utilize an algorithm to 

normalize brake power as a proportion of the kinetic energy of the 

bicycle-rider system, effectively scaling rider input to the brakes 

to both mass and velocity. It was hypothesized that normalized 

brake work would be more strongly associated with descending 

performance than traditional brake power meter metrics. 

Although relative brake work, brake time and relative brake 

power were all significantly associated with performance time on 

a mountain bike descending track (Figure 2A-C), normalized 

brake work explained more variance in descending performance 

time on the track used in this study (Figure 2D). By itself this 

result is important, as it indicates that normalized brake work 

could be used to quantify the contribution of skill to descending, 

and thus could be used to provide feedback about skill; this metric 

would be particularly useful in situations where the downhill, by 

its nature, requires significant propulsive work (unlike the 

downhill tested here). 

Eq. 1-3 highlighted some of the complexities when utilizing 

traditional brake metrics such as relative brake work and relative 

brake power to explain variations in MTB descending time. The 

present method for calculating normalized brake power (Eq. 6) 

normalizes instantaneous brake power based on mass and velocity 

and is indicative of the proportion of kinetic energy removed at 

any time during braking. Once normalized brake power is 

integrated over time (Eq. 7), the resultant normalized brake work 

metric theoretically offers a broader representation of the 

conservation of kinetic energy with respect to braking than 

traditional brake measures. Since the potential energy of the 

bicycle-rider system is a product of the mass of the system times 

the height of the track and gravity, and there was negligible 

propulsive work completed by participants, the normalized brake 

work algorithm has sound theory for use in explaining the present 

descending performances. 

The results presented in this study firstly reinforce the 

relationship between braking and mountain bike descending 

performance (Figure 2A-C). Indeed, the fastest performance times 

were associated with reduced relative brake work, reduced brake 

time, and increased relative brake power. These findings are not 

surprising, but support the qualitative importance of efficiently 

controlling the speed of the bicycle down the hill (Chidley et al., 

2014; Hurst & Atkins, 2006) and reinforce earlier braking 

investigations (Miller et al., 2017; Miller, Fink, Macdermid, 

Allen, & Stannard, 2018; Miller et al., 2019). However, the main 

finding presently is that the normalized brake work metric was 

more strongly related to performance (Figure 2D) and can 

therefore explain more variation in descending performance than 

traditional measures from a brake power meter considered in 

isolation. This finding is promising because normalized brake 

work can indeed explain the variation in descending performance 

based on brake power meter data alone, thus eliminating the need 

for qualitative measures of descending performance or for other 

equipment. Moreover, the single metric output reduces the 
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complexity of multivariate analyses of braking performance, 

which eliminates a potential barrier to use of the brake power 

meter for skill improvement. 

Finding the most appropriate variable to provide feedback to 

riders is complicated by the correlations between normalized 

brake work and other braking variables measured in the study (e.g. 

brake time, relative brake work) as well as, potentially, braking 

variables not measured in the study (e.g., location of the braking 

events). One factor affecting performance is the location of the 

braking, which has been previously identified as a major 

difference between experienced and inexperienced riders (Miller, 

Fink, Macdermid, Allen, & Stannard, 2018). This factor that could 

likely benefit from visual inspection and should be explored 

further. Another braking factor affecting descending performance 

in the shape of the braking curve, as can be seen in Figure 3. A 

late-braking strategy is displayed by the high-performing rider, 

and acts to reduce performance time since a greater proportion of 

the time is spent moving more quickly. While the shape of the 

braking curve may indeed affect performance, the shape cannot 

be understood solely by looking at normalized brake work and 

may likely rely on visual inspection. Similarly, line choice likely 

factors into performance differences as well. Firstly, these could 

be analyzed based on GPS position, though these devices lack 

some resolution (Coutts et al., 2010). Furthermore, it is likely that 

there is an interaction with other elements of skill, particularly 

with the path chosen to go around corners, that will affect braking. 

For example, by changing the path going around a corner, the 

radius of the turn, and therefore the centripetal force required to 

make the turn at a given velocity, will change. Thus, changes in 

path (or line around a corner) will likely play a role in determining 

how much braking is necessary for the corner, which will in turn 

be reflected in the braking metrics. These complications are 

acknowledged, and future research will have to explore these 

relationships in greater detail. Nevertheless, even with these 

limitations, normalized brake power is useful as a way of 

quantifying aspects of skill related to the control of velocity 

during descents. 

Because the study of braking in mountain biking is a relatively 

recent subject of study, at present we can only give suggestions 

for how normalized brake power could be used: research along 

these lines is continuing. One thing that is clear is that what 

constitutes a good normalized brake power will depend on the 

course that is being ridden: a straight line gentle descent will 

require little, if any, braking and therefore a normalized brake 

power of close to 0 for riders of any skill level; a very technical 

descent, requiring many sharp turns, on the other hand, will 

require a larger normalized brake power for even the most skilled 

rider. For this reason, it is recommended that comparisons only be 

made between descents of the same trail. By adjusting brake 

power for both mass and velocity, however, comparisons between 

individuals can be made, and also within the same individual 

between different runs (e.g., Miller, Fink, Macdermid, Allen, & 

Stannard, 2018; Miller et al., 2019, although these studies 

predated the normalized brake power).  

Normalized brake work can also be used for entire descents, 

but could also be broken down for individual braking events. By 

calculating a normalized brake work for each corner or each 

braking event, and comparing the normalized brake work for each 

braking event to either other riders, or to the rider’s previous 

descents, normalized brake work could be used to identify 

potential problem areas on the course. For example, Figure 3 

shows a high performing (blue) and low performing (red) rider on 

the same section of the course. This section contains two turns, 

and therefore two braking events. There was little difference 

between the two riders on the second braking event, suggesting 

that braking event was not a problem for the low-performing rider 

on that turn. On the first braking event, however, there were large 

differences between the two, which would indicate the low 

performing rider could improve performance by concentrating on 

that particular braking event or turn. That information, by itself, 

could be useful but when combined with GPS or video, the exact 

nature of the problem (e.g. incorrect line leading into the turn, 

requiring more braking, braking past the apex of the turn, etc.) 

could be explored in more detail. 

Development of a brake power meter, and identification of 

relevant metrics to describe braking, also raises the possibility for 

studies of the visual (and potentially other perceptual) information 

used to guide braking. Control of braking has been studied using 

an ecological framework (e.g. Fajen, 2005; Fajen, 2008; Lee, 

1976; Yilmaz & Warren, 1995), but these studies have examined 

the case where the person is coming to a complete stop. In 

mountain biking, the goal is to move around a corner as quickly 

as possible, and only rarely coming to a complete stop. Because 

the goal is different, the proposed models do not apply, and the 

tau-based control (e.g. Lee, 1976; Yilmaz & Warren, 1995) must 

be modified. Given the nature of the task, it seems likely that the 

affordances involved must be directly incorporated in the control 

laws governing braking (e.g., Fajen, 2007). At present, no existing 

models for the control of braking appear to be sufficient for 

explaining the control of braking in mountain biking, but this is 

an area that could be further explored. 

This study shows that the normalized brake work algorithm 

has sound theoretical reasoning for use in comparing brake data 

between riders travelling at different speeds. Normalized brake 

work can describe more variation in descending performance than 

other braking measures, which gives the brake power meter 

greater utility as a training tool. It is recommended that training 

interventions be utilized to enhance the braking patterns of low-

performing mountain bikers, which should come as a benefit to 

their normalized brake work. 
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